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In this paper the problems of using aggregate monthly data to estimate learning curves are
investigated. Here, aggregate monthly data on labor hours are assumed to contain some of
both fixed and variable labor hours. They are also d to be infl d by fluctuating
quantities of work in process. A distributed lag model is developed to deal with these two
characteristics of aggregate monthly data. The model is generalized to permit production rate
to influence labor productivity. This generalized model is then estimated and compared to a
cumulative average learning curve in analyzing the impact of a production break. A set of
production data which arose from a government contract claim is used for this purpose.
(PRODUCTION/SCHEDULING—WORK STUDIES; FORECASTING—APPLI-
CATIONS; LABOR)

1. Introduction

Yelle’s (1979) survey lists 93 references to recent applications of the learning curve.
Rather clearly, the learning curve concept is thought to be important as both a
descriptive model and a decision making tool in a wide variety of settings.

Frequently, learning curves are estimated from the direct labor hours expended in
the production of each successive unit of a product. In some cases, where unit data are
unavailable, direct labor hours expended on each successive lot of units and the
number of units in each lot are used instead. See Asher (1956), Berend (1977), and
Conway and Schultz (1959) for a discussion of learning curve estimation in these
environments.

In a data collection system designed for estimating learning curves, labor hours
would be collected either by unit produced or by lot. But sometimes the data collection
system which must be used is not designed for learning curve estimation. Frequently
this is the case when only historical data are available for learning curve estimation.
This situation might also characterize ongoing production efforts where the cost of
collecting unit cost data is prohibitive.

In this paper learning curve estimation is investigated in an environment where
labor hours and number of units produced are collected only for some unit of time,
say a month. That is, the available data do not directly relate labor hours and a
specific group of units to each other, but only to the month of observation. Others
have estimated learning curves in this data regime. Baloff (1971) used monthly and
quarterly accounting data to estimate learning curves for a musical instrument, for
apparel manufacture and for automobile assembly. Likewise the data provided by the
Boston Consulting Group (1970) are annual data. on various equipment.

The monthly data environment may mask two phenomena which, if not adequately
modeled, can severely bias the estimated learning curve. First, the production period
for a unit may be much longer than one month. Thus the units shipped in one month
result from labor in, perhaps, several previous months. This results in substantial work
in process at the end of each month. A second phenomenon may also be masked by
this data problem. Labor hours are not reported by unit. So it is possible that some of
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the labor reported as direct labor hours may, in fact, be indirect labor hours. That is,
an accounting system that does not track labor by unit may fail to discriminate direct
labor from indirect labor as accurately as one that does. But indirect labor might not
be subject to learning at all.

Estimating learning curves without adequately modeling the data generating situa-
tion can lead to serious errors—errors that can completely distort a decision maker’s
perception of the production situation and lead to quite inappropriate decisions. In the
next section a numerical example is provided which illustrates some spurious learning
effects which are estimated from aggregate monthly data. A distributed lag model to
deal with aggregate monthly data is developed in §3. It is estimated and applied in §4.

2. An lllustrative Example

The consequences of estimating a cumulative average learning curve directly from
monthly data without modeling work in process or considering misclassified labor
hours are demonstrated by the following numerical example. Conway and Schultz
(1959) anticipate some of these consequences, “the cumulative average formulation of
the progress function is overused—primarily because the averaging process has tre-
mendous power to smooth the data and enhance the appearance if not the substance
of the curve.”

There is no learning in the production of widgets. Each widget requires three hours
of labor for its production, one in each of the three months preceding shipment. In
addition, to operate the widget plant, one labor hour is required for each month in
which any widget production is taking place. This hour is consumed by jobs such as
supervision, replacing bench stock, trips to the tool crib, coffee breaks, and other once
a day activities, activities that would ordinarily be classified as indirect labor. How-
ever, since the accounting system does not track labor by units, this is referred to as
direct supervision and is included in direct labor hours.

The aggregate monthly data on production activity in the widget factory over a
15-month period are listed in Table 1. Seven shipments of two widgets each are made
in the months March through September; no widgets are shipped from October
through January; one widget is shipped in February and another in March. The
corresponding data on aggregate monthly labor hours reflect the one hour per month

TABLE |
Aggregate Monthly Data on the Widget Factory
Monthly Cumulative
Units Labor Units Cumulative Cumulative
Month Shipped Hours Shipped Labor Hrs. Avg/Labor/Hrs
Jan 0 3 0 3 —
Feb 0 5 0 8 -
Mar 2 7 2 15 15
Apr 2 7 4 22 55
May 2 7 6 29 483
Jun 2 7 8 36 45
Jul 2 7 10 43 43
Aug 2 5 12 48 40
Sep 2 3 14 51 3.64
Oct 0 0 14 51 —
Nov 0 0 14 51 —
Dec 0 2 14 53 —_
Jan 0 3 14 56 —_
Feb 1 3 15 59 3.93
Mar 1 2 16 61 381
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of direct supervision, and the labor used to produce work in process at the end of the
month.

It seems clear that a unit learning curve does not apply to these data. In the first two
months labor hours are expended but no units have yet been shipped. Furthermore,
the entire period from October to January is not likely to fit a unit curve. On the other
hand, if the cumulative average labor hours are calculated, the situation appears to be
more compatible with learning. Then the set of data seems to follow the usual learning
curve pattern from March through September. In October an apparent two-month
break in production occurs. If the log of cumulative average labor hours from March
through September is regressed on the corresponding cumulative units shipped, a
cumulative average learning curve seems to explain the data very well. The relation is
estimated as

G =925Z7%% $))

where C; is cumulative average direct labor hours though month j and Z; is cumulative
widgets shipped through month j.

The exponent (—0.347) indicates a 78.6% learning rate. The exponent and the
intercept, the first unit cost, appear to be statistically significant at the 5% level. The
value of R? is 0.98 indicating a close fit to the data. Thus, the effect of ignoring the
problems of work in process and direct supervision is to estimate a 78.6% learning
curve from data that were generated with no learning at all. The data and the
estimated learning curve are plotted in Figure 1.

To continue the illustration a bit further, the production situation after October is
compared to the estimated learning curve. From Table | it is clear that 10 labor hours
were incurred in the production of the last two widgets. But, extrapolating along the
estimated learning curve yields 3.56 cumulative average labor hours required to
produce 16 widgets. Therefore, total labor predicted for 16 widgets is 56.6 hours and
the additional labor predicted for the last two widgets is 4.7 hours. Following
Anderlohr (1969) one might be tempted to conclude that a break in production of two
months resulted in loss of learning of 5.3 hours, or 53% of the hours required to
produce the last two widgets. The data in Figure 1 are subject to other interpretations
as well. If there were no apparent break in production, two data points above the
regression lines at the end of the production run might illustrate “toe up.” Likewise,
had the run stopped in October, the data would seem to exhibit “toe down.” See
Russell (1968) for more discussion of these phenomena,

In fact, the increased unit cost of the February and March deliveries is due to both
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FIGURE 1. Estimated Cumulative Average Learning Curve
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the production break and the reduced production rate, but it has nothing at all to do
with learning. The unit cost of widgets increases merely because four hours of direct
supervision (December though March) are spread over only two units.

This example emphasizes the bias that can be introduced into analyses by ignoring
the data problems of work in process and misclassified labor hours. Mistreating the
data by ignoring these problems introduces a persistent bias towards learning into the
analysis. This bias can be critical when evaluating the effect of a production break.

Of course, the data for this example were generated with no learning and both data
problems present. If the labor content of the work in process each month were not
known, it would not be clear if learning were present in the data or not. If the data
were more realistic, with random errors and varying quantities shipped, it would be
even less clear whether learning applied to data and, if so, how to estimate a learning
curve. A model to deal with this and more general situations is developed in the next
section.

3. The Lagged Model

When data are available by “Lots” of units, a usual form of the learning curve is
L/U;=a(X;)®  where )

L, = labor hours expended on the ith lot,

U, = number of units in the ith lot,

X; = cumulative number of units produced through the midpoint of the ith lot.

Equation (2) is a unit learning curve which relates average lot labor hours to
cumulative production. « and B are parameters to be estimated in equation (2). Even
though (2) is a different model from (1), « and 27 are often referred to as the “first unit
cost” and the “slope” of the unit learning curve just as the intercept and the slope of
the cumulative average learning curve were. For lot learning curves this interpretation
is appropriate only if X; is the “true lot midpoint.” (See Berend 1977 for more details
on this.)

From (2) the labor hours required for each lot is given by

L= aXfU,. &)

The aggregate monthly data used in the next section are not collected by lots of
units. Nevertheless, to use this model, we assign all the units that are shipped in the
same month to the same lot. This designation permits the subscript i to stand for both
the ith lot and the ith month of shipment. So U,, the size of the ith lot, is also the
number of units shipped in month i. Since U; measures output per unit of time, it can
be regarded as a measure of production rate.

The model at (3) can now be generalized to permit production rate to affect unit
labor hours. This generalization is not new. Asher (1956, p. 86) discusses the impact of
production rate on learning curves and Conway and Shultz (1959, p. 42) refer to a
learning curve that is sensitive to production rate as the “generalized progress func-
tion.” The generalization is included in studies by Alchian (1959), Hirshleifer (1965),
0Oi (1967), and Womer (1979, 1981). Successful empirical work on generalized learning
curves is rather scarce, but Smith (1976) and Washburn (1972) have made recent
contributions.

A convenient generalization of the learning curve at (3) is

L= oXPUY  where C))
¢ 1S a parameter describing refurns to scale mn the production process.
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This model is a special case of the model in Womer (1979), but here U; 1s assumed
to be an exogenous variable, not controlled by the producer. In (4), @ can be thought
of as the first unit cost corresponding to a production rate of one unit per month.

Since the direct labor hours expended on the units shipped in month i (lot i) are not
observable, equation (4) cannot be directly applied to the data. The direct labor hours
that are expended in month j, D;, are expended on perhaps several lots of monthly
shipments, say j, j + 1, j + 2, ..., j + k, where k is the number of months required to
produce a unit. To make use of equation (4) we assume that the direct labor hours
expended in month j on units to be shipped in month i (lot i) are some fraction of all
the direct labor hours expended on the units in lot i. Furthermore, we assume that the
fraction, §;_ o depends only on the difference (i — j), the number of months until
shipment. This assumption requires that production is organized as a fixed sequence of
events which does not change as learning takes place and as production rate changes.
Furthermore, it requires that changes in labor requirements are distributed proportion-
ately across the events. If L; represents the labor hours expended on lot i in a
preceding month j then this assumption requires

L =8;_p(Ly)- 5)

Letting h = i — j it is also assumed that

k
5,=0 for h>k and 3 §=1. (6)
A=0
That is, no labor is expended on the units to be shipped iy months more than k
months in advance of the month of shipment, and the sum of the labor expended on
units shipped in month i over the k -. 1 months ending with month i is the total labor
expend on lot i.
Substituting from (4) into (5) yields:

Ly=8,_,aXPUr  (j=i-ki—k=1,...,i. ©)

(O]

Equation (7) relates some of the labor hours in month j, L;;, to units which will not be
completed until month i. Even though these units have not yet been completed, they
measure experience on the production events that are relevant to L;. Summing (7)

over the k + | months ending with month i yields the labor hours required for lot i:

i

L= . 2 Lij = 2 s(i—J')aXiﬁ(}iY= "-XiﬁUiy » (8)
Jj=i-k J=i—k

as required by (6).

Under these assumptions, the learning curve of (4) can be thought of as the sum of
the k + 1 individual learning curves at (7). The representative learning curve applies to
the activity that precedes shipment by i —j months. This is similar to the dis-
aggregation-aggregation approach described by Conway and Schultz (1959), but here y
and B are the same for each of the curves.

Summing (7) cver all the lots (i) that are in process during month j yields:

j+k j+k
D;= 2] L= .-%»8"" HeXPUY )

where D), is total hours expended in month j on all lots.
The labor hours expended in month j, M;, are given by

M;= Lo+ D, (10)
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where L, represents labor hours expended that are elements of fixed cost, unaffected
by either production rate or learning.

In equation (9) « and the set of 8’s are not all estimable. Letting # = i — j, the model
is reparameterized by setting d, = 8;_,a. Estimates of the 8’ and « may then be
derived using (6) and (9). Substituting (9) into (10) yields

k
M= Lo+ 2 dXfen Ul an

Equation (11) is a finite distributed lag model. Given the assumptions at (5) and (6), it
is consistent with a generalized learning curve. In addition, the model at (11) permits
some of the labor hours incurred each month to be elements of fixed cost, independent
of production rate or learning.

The lagged model can be estimated using nonlinear least squares. Comparing the
model to the data in Table 1 we see thatif k=2, Ly=1,d,=1,8=0and y=1 the
lagged model fits the widget data exactly. In the next section the lagged model is
applied to some production data which is characterized by varying monthly shipments.

4. The Lagged Model in Use

This application grew out of a claim on government contract. The contract was for
some 540 made-to-order units of an electric-mechanical product. The production data
examined arose from assembling and wiring complex electrical and mechanical com-
ponents, testing the product and adjusting it prior to shipment.

The production effort was manually paced and involved mostly hand work. This
portion of the manufacturing effort averaged over 1000 manhours per unit for the
six-year life of the contract. The contractor’s claim was based on the analysis of
monthly direct labor hours and measures of monthly output over a 64-month period.
The series on monthly output and on monthly labor hours are graphed in Figure 2.

Figure 2 shows the widely fluctuating levels of output rate and direct labor hours
over time. The contractor argued that Figure 2 shows a production break in month 47,
Month 48 began a six-month period during which no units were shipped. Likewise, for
five months starting in month 47 an average of only 441.3 direct labor hours per
month, only 4% of the average monthly labor hours, were expended on the program.
The contractor argued that the production break resulted in a loss of learning. He
asked to be compensated for the cost of this lost learning.
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FIGURE 2. Monthly Labor Hours and Output.
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No information was available which relaied the number of units produced to the
labor hours required for their production. The direct labor hours were reported by
month, not by unit. The hours reported included both the time of supervisors and
“hands on” production time, but one can’t tell how much of each is included. Some
labor hours were probably expended on units over at least a four-month period prior
to their shipment. This is inferred from contract provisions which call for shipments no
more than 150 days after receipt of orders and from the contractor’s original produc-
tion plan which scheduled production activity up to 140 days in advance of shipment.

Because of these data problems, the lagged model at (12) was applied to the data.
The initial value of k in the lagged model was taken to be four. The parameters of (11)
were estimated using Marquardt’s (1963) method of nonlinear least squares as imple-
mented in Robinson (1977).

Preliminary analysis showed that it was not necessary to make use of units shipped
four or more months in the future to explain monthly labor hours (a three-month lag
structure was always sufficient to explain the data). This reflects the fact that only a
small portion of the work on a unit was planned to start as much as 140 days prior to
shipment.

The statistical results of estimating the lagged model on the first 47 months of data
are displayed in Table 2. The first column of Table 2 reports results for the model at
(11) estimated without restriction. While the unrestricted model provides a good fit to
the data, the intercept, L, is estimated to be negative. L, is not significantly different
from zero given the rest of the model, however.

The restriction that L, = 0 was then imposed on the model. This restriction implies
that all the labor hours each month are variable and subject to learning; it resulted in a
slight increase in the RSS. All of the coefficients except d, are still estimated to be
significant at approximately the 5 percent level. In the case of d, the estimate to
standard deviation ratio is 1.7, indicating a high level of significance for d, as well.

Two other regressions are reported in Table 2. In both these cases y (the coefficient
of production rate) is restricted to be 1.0. With this restriction, permitting L, to be
greater than zero reduces the residual sum of squares by approximately 16 percent,
Nevertheless, the model with y unrestricted has substantially smaller residual sum of

TABLE 2
Statistical Results for the Lagged Model
Coefficients Model Restrictions
Ly=0 Lg Unrestricted Ly=0
None v Unrestricted y=10 =10
Ly —044 0.00F 2.29* 0.0F
dy 3.8+ 295 1.06* 1.13*
d, 0.87 0.78 0.34* 0.43*
dy 1.22¢ 1.14* 0.54* 0.63*
dy 1.88* 1.70* 0.61* 0.73¢
B —0.14¢ - 0.14¢ -021* - 0.20*
v 0.55* 0.59* 10F 1OF
Statistics*®
RSS 2530 253.6 290.8 3479
R? 0.83 0.83 0.80 0.76
df 40 41 41 42

*This estimate is significantly different from zero at the 5% level based on the linear approximation
to the 95% confidence intervals calculated by the SPSS Nonlinear Subprogram (Robinson 1977).

$*RSS is the residual sum of squares; R is the proportion of variation in monthly labor hours
explained by the model and df is the degrees of freedom for the model.
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squares than either of the models with y restricted to 1.0. Furthermore, the estimated
value of y in column two, 0.59, is significantly different from 1.0, thereby indicating a
nonlinear relation between production rate and monthly labor hours and economies of
increased production rate.

The lagged model was developed to overcome the data problems created by work in
process and misclassified labor hours discussed above; but it has an additional
advantage. If these data problems are not present, then the lagged model reduces to an
ordinary unit learning curve. In our case however, y and d, through d, are estimated to
be significantly different from zero, indicating that the more complex lagged model is
necessary to adequately explain the data.

The model with L, restricted to zero (no fixed labor hours) and y unrestricted is
therefore recommended as an adequate description of monthly labor hours. Using the
coefficients in the second column of Table 2 the lagged model is

M; =295U%X; %14 + 0.78USX, T + L14USZX 31 + LTOUSTX;38Y. (12)

This corresponds to a 91% unit learning curve with a first unit cost of 6.57 at a one
unit per month production rate.

The contractor used the data without regard to work in process, production rate and
misclassified labor. Like the numerical example in §2, the contractor estimated a
cumulative average learning curve by taking logarithms of the cumulative average
data.

The contractor’s learning curve, estimated from the first 47 months of data, is

C;=8.65Z 0%, (13)

Z; is the cumulative number of units shipped through month j, and C; = 3/, M,/ Z; is
the cumulative average labor hours incurred through month j. The exponent of —0 34
corresponds to a 79% learning rate.

The coefficients of the contractor’s learning curve are statistically significant at the 5
percent level, and R? is 0.99 indicating a very good fit to the logarithm of the
cumulative average data. The Durbin-Watson statistic for (13) is 0.49. This indicates
that the residuals of the model are subject to positive first-order autocorrelation. The
Durbin-Watson statistic for the lagged model is 1.81 which indicates no such problem.

The contractor’s learning curve (13) is estimated after a logarithmic transformation
of the cumulative average data while the lagged model (12) is estimated without
transforming the monthly data. Therefore, the statistics of the two models are not
comparable. The learning curve (13) and the lagged model (12) can be compared by
their ability to explain cumulative labor hours, however.

The differences between the cumulative hours estimated by the contractor’s learning
curve and the cumulative hours provided as data are plotted as a dashed line in Figure
3. The differences estimated by the lagged model are plotted as a solid line in Figure 3.
For reference, the horizontal line shows the plot for a perfect fit, that is, a zero
difference. Points below the horizontal line indicate estimates lower than actual
cumulative hours. In 35 of the 47 months the lagged model differences are smaller
than the learning curve’s. Of course, the lagged model should fit the data better, it uses
5 more parameters than the learning curve.

The learning curve predicts that no hours will be required in months when there are
no shipments. As a result, the learning curve is at a disadvantage in this comparison.
To compensate for this the first five months are deleted from the comparison.
Calculating the mean squared error (MSE) over the remaining 42 months gives a MSE
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FiGURe 3. Differences between Cumulative Labor Hours and Predicted Cumulative Labor Hours by
Month Prior to the Production Break.

for the learning curve of 86.7 and a MSE for the lagged model of 15.7. It seems clear
that the lagged model does a better job of fitting cumulative labor hours over this
period.

In Figure 4 the plots of differences are continued beyond month 47. As expected,
the learning curve fails to adequately describe the data in this period. At the end of the
contract the difference between the cumulative labor hours predicted by the learning
curve and the actual hours incurred is about 52,000 labor hours. Following Adler and
Nanda (1974) and Anderlohr (1969), the contractor argued that this was due to loss of
learning. The government argued that the learning curve’s misspecification and its
inability to model work in process was at fault.

During the same period the lagged model continues to predict cumulative labor
hours relatively well, ending with an under prediction of some 5,000 hours. The lagged
model also explains the monthly data after month 47 very well. The MSE for the
lagged model on the monthly data (not the cumulative data) for the first 47 months is
5.40, but for the period after the production break, the MSE is only 4.19. That is, the
lagged model, estimated from data through month 47, fits the data after month 47
even better than the data from which it is estimated.

More formally, estimating the lagged model using only the observations after month
47 yields a residual sum of squares, RSS,, of 25.47. Pooling all 64 observations yields
RSS, of 319.11. Letting the residual sum of squares for (12) be RSS,, an approximate

1
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FiGuRe 4. Differences between Cumulative Labor Hours and Predicted Cumulative Labor Hours by
Month.
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F statistic, (see Theil 1971, p. 147) can be calculated as:

_(n- 2k) RSS,— RSS,— RSS,
(652 k RSS, + RSS,

= (64— 29) r 319.1 - 253.6 - 25.5
6 2771

This is not significant at the 5% level. Therefore, the hypothesis that a structural
change in the relation occurred at month 47 is rejected.

We conclude that the lagged model is the more complete specification of the
situation before the alleged production break, that the lagged model adequately
describes the situation after the alleged break in production, and that the alleged break
in production introduced no significant change in the situation.

The lagged model does not refute the contractor’s claim that unit labor hours were
higher after month 47; of course, they were higher. The period from month 48 to the
end of the contract is characterized by a somewhat lower production rate than the
previous 47 months. The lagged model permits this lower production rate to impact
monthly labor hours both directly and through its impact on work in process. It seems
clear that the significant changes in production that took place after month 47 are
explained better by changes in work in process and reductions in production rate than
by a loss of learning. If the customer were to be blamed for the reduced production
rates and if the contract permitted compensation for these reductions, then the lagged
model would be an appropriate basis for estimating the costs of the reduced rates.

] = 1.316. (14)

§. Conclusions

In the paper, the problems of using monthly data to estimate learning curves have
been discussed and illustrated. A new tractable procedure for estimating generalized
learning curves from monthly data was developed. This finite distributed lag procedure
was applied to a data set, and the results were compared to those from a cumulative
average learning curve estimated from the same data. At least for this data, it was
found that the lagged model provided the more appropriate specification of the
situation. The lagged model was then applied to the problem of estimating the impact
of claimed break in production. Here it was found that the changes in the monthly
labor hours after the production break were nicely explained by the lagged model
estimated prior to the claimed break. The impact of the claimed break was therefore
limited to its impact on work in process and production rate, and no loss of learning
was noticeable. This result points out a difficulty in applying previous work on the
impacts of production breaks to observed sitautions. In this case, either the five-month
period where direct labor per month fell to 4% of its previous average did not
constitute a production break, or the production break did not result in a significant
loss of learning.
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